

© Genuine BVBA

 UML to XSD

Expressing object oriented concepts
in the eXtensible Markup Language

Purpose

While data exchange and web service protocols such as
XML and WSDL have an important role to play in enabling
web services, they rely on the client and server sharing a
common understanding of the underlying business
domain. This common understanding is often expressed in
UML. Indeed, the Unified Modeling Language is
increasingly used to express business processes in an
industry-neutral manner.

In a preliminary phase, a high-level analysis using use-
case diagrams is made. The business analyst then drills
down to object diagrams, defines the collaboration
relationships between specific objects, and identifies
individual classes. Producing a class diagram is the final
step in this particular context, as it offers a starting point
from which the data model can be translated into XML
quite easily. The rules for this transformation are
described in the XMI standard, a subject treated in
another paper entitled ‘XMI explained’.

UML and schemas

In XML, data models can be expressed by using DTDs
and schemas. Because of the limitations of DTDs,
schema’s are best suited to reflect data modeled with
UML. DTDs do offer limited functionality to express
associations between classes. By using ID and IDREF(S)
you can create one-to-one and one-to-many relationships
between elements in the XML file. However, to express
the complex relationships that UML can model, more
elaborated mechanisms are needed. Fortunately, many of
these mechanisms are available in the schema language.

In the following paragraphs, we’ll focus on schemas, and
how we can use them to express relationships such as
compositions and generalization that exist in a UML
model. However, even though schemas do a great job in
porting the aforementioned concepts to XML, some object
oriented techniques such as multiple inheritance cannot
be represented in the current version of schemas.

Data Models

A data model represents the relationships and multiplicity
between the different classes that you may have defined
for your particular business process. Classes give an
abstract representation of a real-life object. A class
diagram is a static diagram, and thus the information
contained in the class diagram is valid in every stage of
the business process’s’ execution. The following class
diagram represents the different entities that we could
define to represent a person-address relationship.

If we needed to add more information to our data model,
we could choose to add this information as new classes
or as attributes. For example, a country code could
arguably be added as an element in its own right, or as an
attribute to the country element. In this particular case we
would surely opt for an attribute. Keep in mind that the
data model should be as simple as feasible, keeping the
number of classes to a strict minimum. This of course can
prove to be a challenging task when modeling complex
systems such as a business process.

Mapping a class

A class and its attributes can easily be mapped to
schema elements. The class itself is mapped to a
complex element by default, and the attributes can be
mapped to individual attributes, or to an enumeration in
the schema. Attributes in UML have no particular order,
so the schema enumeration element is ideally suited to
represent attributes.

eTechnology series

© Genuine BVBA

Genuine
Ganzendreef 12 Tel. 0032 (0)2 569 79 66 info@genuine.be
3140 Keerbergen Fax 0032 (0)2 569 06 36 www.genuine.be
Belgium

Associations

Relationships and dependencies between classes are
indicated by using associations, compositions and
aggregations. Let’s start with a simple association
between classes: as shown in the following illustration, we
can use an element or an attribute to express the UML
association in a schema:

As it is done in a DTD, the schema also uses ID and
IDREF statements to indicate the link between the classes
when expressed as elements. When an attribute is used
to indicate the link, the association role name (Buyer) is
used to create the link.

Compositions

Aggregations are treated just as associations; because
aggregations ‘own’ their elements by reference, preferably
ID and IDREF pairs will be used. (An example aggregation
could be a car: a car is composed of an engine, wheels,
etc…) But an aggregation can exist without the elements
that it refers to. The same is not true for a composition!
Compositions ‘own’ their elements by value:

As soon as the top level element of the composition is
unavailable (in this example: House), all the owned
elements are also unavailable. Compositions can easily
be expressed in an XML file because XML elements also
‘own’ their child elements by value. (In this case, House is
a container element for Door and Garage -House ‘owns’
Door and Garage.) One important thing to notice here is
the way in which attributes are mapped to the schema:
attributes containing string information are usually
mapped to elements, because string data can become
quite large rendering the XML file difficult to read.

Inheritance

Finally, there is the concept of inheritance that we would
like to see expressed in a schema. Inheritance is used for
example in a generalization where the sub-classes inherit
features of the super-class, such as attributes and
functions. When porting UML to XML, the so-called copy-
down inheritance is used, meaning that all the attributes
and functions of the parent class are available (‘copied
down’) to the child class.

The important concept to grasp here is the fact that for
example Boat and Car can both be used where Vehicle is
allowed to be used. DTDs can use parameter entities to
represent inheritance, and with schemas we take
advantage of substitution groups. Multiple inheritance,
where one class inherits features from more than one
super class, cannot be expressed in a schema at this
time.

Conclusions

Expressing UML models in XML is becoming increasingly
important as companies want to communicate part of their
business process through electronic messages and web
services. Currently, schemas do a great job in expressing
UML concepts although, as we’ve seen, some restrictions
still exist. Rest assured though, that many shortcomings
will be tackled in the upcoming version of schemas.

